首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1380篇
  免费   273篇
  国内免费   42篇
化学   97篇
晶体学   3篇
力学   157篇
综合类   2篇
数学   47篇
物理学   1389篇
  2024年   9篇
  2023年   27篇
  2022年   35篇
  2021年   53篇
  2020年   54篇
  2019年   28篇
  2018年   53篇
  2017年   63篇
  2016年   78篇
  2015年   32篇
  2014年   146篇
  2013年   74篇
  2012年   63篇
  2011年   100篇
  2010年   97篇
  2009年   74篇
  2008年   100篇
  2007年   82篇
  2006年   60篇
  2005年   62篇
  2004年   55篇
  2003年   60篇
  2002年   35篇
  2001年   46篇
  2000年   38篇
  1999年   17篇
  1998年   16篇
  1997年   21篇
  1996年   16篇
  1995年   18篇
  1994年   19篇
  1993年   12篇
  1992年   9篇
  1991年   5篇
  1990年   9篇
  1989年   5篇
  1988年   8篇
  1987年   7篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1695条查询结果,搜索用时 209 毫秒
101.
The present series of papers summarizes the results of a three-year research project on the realistic simulation of car audio sound in car passenger compartments using a combined Finite Element (FE) and Geometrical Acoustics (GA) approach. The simulations are conducted for the whole audible frequency range with the loudspeakers of the car audio system as the sound sources. The challenges faced during the project relate to fundamental questions regarding the realistic sound field simulation in small enclosures with strong modal and diffraction effects.The paper denoted here as Part I focuses on boundary and source representations in the FE and GA domain and suggests guidelines for a best-possible acquisition of the required data. Since a straight-forward determination of the boundary and source characteristics is mostly hampered by the immense complexity and inhomogeneity of the materials and loudspeaker configurations inside a car compartment, different measurement and calculation methods have been applied to determine the required data and quantify the corresponding uncertainty. The paper clearly points out the strength and weaknesses of the applied methods depending on the considered frequency range and material characteristics. In order to keep the complexity of the FE simulations at a manageable level, all passive boundaries were considered as locally reacting with impedance conditions.Part II of the study applies the obtained data in combined FE-GA room acoustic simulations and compares the simulated room impulse responses (RIR) with corresponding measurement results. In a final step the observed differences in the RIRs are related to the uncertainty and inherent errors in the boundary and source representation.  相似文献   
102.
Acoustic Emission (AE) technique is an effective nondestructive detecting method, and has a promising application for rail defect detection. So far, little attention has been paid to propagation distances, types, and depths of AE sources, which are important for rail defect detection accurately. This paper presents an experimental study on the simulated AE sources with different propagation distances, types and depths for rail defect detection. Three simulated AE sources with different frequencies are seeded on the cross section of rail, and the depths of AE sources are changed in the vertical direction. After receiving AE signals, wavelet transform and Rayleigh–Lamb equations are utilized to extract time–frequency features and modes. Based on the wavelet transform with corresponding group-velocity curves, the influences of different propagation distances, the features of different source types and the rules of different source depths are examined. It is concluded that the features of AE sources with different propagation distances, types and depths can be obtained by AE technique for rail defect detection. It is very useful to analyze and detect defects in rail defect detection.  相似文献   
103.
Conventional numerical techniques, used to study the acoustics of a car passenger cabin, treat the cabin as an isolated cavity excited by the cavity boundaries. Realistically, other cavity volumes such as the trunk communicate with the cabin through the holes in the parcel shelf of the car. An extended acoustic model of a car is formed by the cavity volumes of the passenger compartment and the trunk as well as air leakages through the holes provided for electrical devices and ventilation on the parcel shelf. In this study, the dynamic influence of air leakages between the passenger and trunk compartments on the first and second coupled system modes was investigated experimentally using acoustic frequency response function. The response to the acoustic excitation was measured for four different configurations of trim and holes of the parcel shelf. The natural frequencies of the first and second coupled system modes increased with increasing holes size with and without the trim of the parcel shelf. The experimental results were in good agreement with the reported results of coupling effects of double cavities connected by a neck. In the low frequency region since the wavelength is longer compared to the holes dimension, these holes act as point sources.  相似文献   
104.
This paper reports an investigation into the use of Acoustic Emission (AE) for monitoring gear teeth defects under varying lubrication regimes in helical gears. The investigation used a back-to-back gearbox test-rig with oil-bath lubrication. Variation in oil film thickness was achieved by decreasing the gear metal temperature with nitrogen gas whilst the gears were in operation. Results demonstrate a clear relationship between AE activity, operating temperature and specific film thickness. In addition, results show that there are lubricating conditions that may prevent AE from identifying the presence of gear defects.  相似文献   
105.
This paper examines the accuracy of the speech transmission index (STI) calculated from the reverberation time (T) and signal-to-noise ratio (LSN) of enclosed spaces. Differences between measured and predicted STIs have been analysed in two rooms (reverberant vs. absorbent), for a wide range of absorption conditions and signal-to-noise ratios (sixteen tests). The STI was measured using maximum length sequence analysis and predictions were calculated using either measured or predicted values of T and LSN, the latter assuming diffuse sound field conditions. The results obtained for all the conditions tested showed that STI predictions based on T and LSN tend to underestimate the STI, with differences between measured and predicted STIs always lower than 0.1 (on a 0.0–1.0 scale), and on average lower than 0.06. According to previous research, these differences are noticeable and therefore non-negligible, as 0.03 is the just noticeable difference in STI. The use of either measured or predicted values of T and LSN provided similar STI predictions (i.e. non-noticeable changes), with differences between predictions that are on average lower than 0.03 for the absorbent room, and lower than 0.01 for the reverberant room.  相似文献   
106.
Centrifugal pumps are a source of pressure and flow rate perturbations in hydraulic pumping systems. In particular, a significant excitation is usually induced at the blade-passing frequency and harmonics as a consequence of the fluid-dynamic interaction between the rotor and the stator. The magnitude of this excitation is very dependent on the internal geometry of the pump and on its point of operation, but it depends also on the acoustic response of the hydraulic network to the perturbations. The induced and transmitted perturbations can be either amplified or reduced depending on the pump-circuit acoustic coupling, and thus they can lead to excessive levels of noise and vibration under certain conditions. The purpose of the present investigation is the theoretical and experimental characterization of the perturbations induced in a laboratory pumping system, as a function of the acoustic impedance of the pipelines. For different points of operation, the blade-passing frequency impedance is changed by varying the speed of rotation and, additionally, by modifying a closed side branch of the hydraulic system (that is, in the absence of net flow through it). For the theoretical calculations an acoustic model, based on matrix formulation, is applied to obtain the influence of different acoustic impedances of the suction side on the pressure fluctuations at the pump. Test measurements with a fast-response piezoelectric pressure transducer situated at the tongue region of the pump under the same system configurations confirm the significant effect of the pump-circuit acoustic coupling on the pressure perturbations.  相似文献   
107.
A novel acoustic emission (AE) source localization approach based on beamforming with two uniform linear arrays is proposed, which can localize acoustic sources without accurate velocity, and is particularly suited for plate-like structures. Two uniform line arrays are distributed in the x-axis direction and y-axis direction. The accurate x and y coordinates of AE source are determined by the two arrays respectively. To verify the location accuracy and effectiveness of the proposed approach, the simulation of AE wave propagation in a steel plate based on the finite element method and the pencil-lead-broken experiment are conducted, and the AE signals obtained from the simulations and experiments are analyzed using the proposed method. Moreover, to study the ability of the proposed method more comprehensive, a plate of carbon fiber reinforced plastics is taken for the pencil-lead-broken test, and the AE source localization is also realized. The results indicate that the two uniform linear arrays can localize different sources accurately in two directions even though the localizing velocity is deviated from the real velocity, which demonstrates the effectiveness of the proposed method in AE source localization for plate-like structures.  相似文献   
108.
Acoustic source localization   总被引:1,自引:0,他引:1  
In this article different techniques for localizing acoustic sources are described and the advantages/disadvantages of these techniques are discussed. Some source localization techniques are restricted to isotropic structures while other methods can be applied to anisotropic structures as well. Some techniques require precise knowledge of the direction dependent velocity profiles in the anisotropic body while other techniques do not require that knowledge. Some methods require accurate values of the time of arrival of the acoustic waves at the receivers while other techniques can function without that information. Published papers introducing various techniques emphasize the advantages of the introduced techniques while ignoring and often not mentioning the limitations and weaknesses of the new techniques. What is lacking in the literature is a comprehensive review and comparison of the available techniques; this article attempts to do that. After reviewing various techniques the paper concludes which source localization technique should be most effective for what type of structure and what the current research needs are.  相似文献   
109.
Bulk Poly(N-isopropylacrylamide) (PNIPAm) hydrogels are thermally responsive polymers that undergo a sharp volumetric phase transition around its lower critical solution temperature of 33 °C. The physical characteristics of bulk, micro-, and nano-form PNIPAm hydrogel have been well-studied, and have applications ranging from biomedical devices to mechanical actuators. An important physical characteristics which reveals lack of available information is speed of sound. Prior studies have utilized Brillouin scattering, multi-echo reflection ultrasound spectroscopy, the sing-around method, and others in measuring the speed of sound. We use a planar resonant cavity with bulk PNIPAm hydrogel in aqueous solution to determine the temperature dependent speed of sound around the lower critical solution temperature. The results show sharp nonmonotonic behavior of the sound velocity in vicinity of the phase transition.  相似文献   
110.
We propose hybrid phononic-crystal plates which are composed of periodic stepped pillars and periodic holes to lower and widen acoustic band gaps. The acoustic waves scattered simultaneously by the pillars and holes in a relevant frequency range can generate low and wide acoustic forbidden bands. We introduce an alternative double-sided arrangement of the periodic stepped pillars for an enlarged pillars’ head diameter in the hybrid structure and optimize the hole diameter to further lower and widen the acoustic band gaps. The lowering and widening effects are simultaneously achieved by reducing the frequencies of locally resonant pillar modes and prohibiting suitable frequency bands of propagating plate modes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号